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Purpose. To demonstrate control of passive diffusion of small molecules through rigid ceramic matrices

via manipulation of matrix porosity near the percolation threshold, and to model such control using

percolation scaling relationships on both infinite and finite lattices.

Materials and Methods. Rigid alumina disks of controlled porosity were prepared using standard

ceramic casting and sintering techniques. Structural void space distributions in sintered disks were

measured by dimensional and volume displacement (pycnometry) methods. The impact of void space on

transport was determined by tracking the diffusion of ionized benzoic acid across sintered disks mounted

in Stokes diffusion cells. Critical percolation thresholds were estimated by fitting structural and

transport-dependent results to percolation scaling relationships. Finite-size scaling studies were

performed by adding polymer microspheres of known diameter to the disks to generate artificially

large pores.

Results. Nonlinear least squares techniques were used to fit both structural and transport-dependent

properties of rigid alumina disks to total disk porosity using percolation scaling relationships. The critical

percolation threshold determined from structural properties (0.129) was lower than that determined

from benzoic acid transport (0.169). The transport-derived percolation threshold exactly matched that

expected for a tetrakaidecahedral (14 sided) lattice. Finite-size scaling was demonstrated through a

nonzero effective volume fraction for transport at the percolation threshold.

Conclusions. Manipulation of total disk porosity near the percolation threshold was shown to be a

suitable means of controlling the transport rate of a model small molecule, while deliberate enlargement

of individual pores was demonstrated to decrease this threshold without increasing total porosity. The

lower-than-expected percolation threshold obtained from the structural model was ascribed to

limitations of the measurement technique. The threshold determined from the aqueous transport model

was concluded to represent the true threshold for this system.

KEY WORDS: alumina; finite-size scaling; percolation; tetrakaidecahedron; transport.

INTRODUCTION

Alumina (aluminum oxide, Al2O3), a common ceramic
biomaterial, was evaluated for its potential use as a rigid,
porous sustained release carrier for drugs of small molecular
dimension (1). It was thought that control of passive diffusion
in such a device could be effected through manipulation of its
total porosity (;) near the critical percolation threshold
(;c), a point at which ; becomes large enough such that at
least one pore cluster completely spans the device and enables
transport across that device (2). Device porosity and its
influence on various bulk properties such as transport could
then be modeled using percolation theory.

To demonstrate through experiment how percolation
theory might be used to model transport near ;c, small

Al2O3 disks were manufactured using standard ceramic
processing methods (3) and their porosity distributions
characterized using dimensional and volume displacement
techniques. Porosity-dependent resistance to transport was
determined by measuring passive diffusion of a model small
molecule (ionized benzoic acid) across disks mounted in
Stokes diffusion cells (4). Values of ;c were estimated for
both the structural and transport-dependent cases by fitting
observed porosity distributions and diffusivities to ; using
percolation theory scaling relationships, and used to develop a
picture of the overall pore structure and its impact on transport.

The power-law scaling relationships for ; and ;c rep-
resent the particular case of systems of infinite size. For sys-
tems that cannot be considered infinite, a technique known as
finite-size scaling (5Y7) may be applied to describe the impact
of size on transport near ;c. The theory of finite-size scaling
provides the basis for the existence of scaling in infinite
systems, and defines the approach to power-law scaling in the
limit of infinite size. Finite-size scaling also provides a means
of extracting necessary information for the power law in
infinite systems from information and data obtained for finite
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systems. In the present case, the ability to maintain transport
of the model small molecule across disks below ;c may be
demonstrated by reducing resistance of individual pores to
transport. Finite-size scaling relationships suggested in the
literature were verified through experiment in order to illus-
trate the potential use of this case in transport control.

This paper describes the procedures used to obtain various
descriptors of alumina disk porosity for both infinite and finite
lattices, and the results of nonlinear least squares fits of these
descriptors to percolation theory models. Particular details
regarding the study of disk fabrication methods through which
porosities were manipulated are not included for sake of brevity.

Applications of percolation theory in pharmaceutical
and other industries are manifold, with the method being
used to predict behavior of disordered systems in areas as
diverse as separations processing (8,9), water vapor transport
(10), tablet granulation and compression (11Y15), and release
control in different drug delivery systems (16Y18). While this
list is by no means intended as an exhaustive review of the
field, these references speak to the power of the method in
characterizing and predicting certain behaviors of complex
systems through simple measurements of key bulk properties.

Alumina Microstructure and Processing

Alumina is a nonmetallic ionic material that in its
thermodynamically stable phase (a-alumina, or corundum)
exists as a hexagonal close-packed crystal. The maximum
density of this crystal (19) has been reported as 3.98 g/cm3,
which was rounded to 4.0 g/cm3 for use in this work.
Individual groups of alumina crystals, called grains,
comprise the broader microstructure along with a random
network of voids, or pores, that exist between the grains. The
void sizes are assumed to be the same order of magnitude as
or larger than the grains themselves. The void network can
consist of isolated voids, which are completely surrounded by
grains, and accessible voids, which are open to at least one
surface of the overall grain/void system. The total void space,
or total porosity, is the sum of these two void volumes.

The size and spatial arrangement of the grain structure
dictate the shape (tortuosity) and average diameter of the
pore network. The arrangement of grains is assumed to be
completely random, with the void space around the grains
being extremely tortuous. The overall structure of this pore
space may be described using a so-called nodesYlinksYblobs
model (20), where the nodes are pore junctions, the blobs are
pore bulbs, and the links are pore throats. The mean cross-
sectional area of the links in this network controls the rate at
which fluid can invade or escape the pore space, but the
overall blob volume controls the length of time required to
fill or empty this space with fluid. Link and blob radii in a
ceramic compact are controlled primarily by the median size
and size distribution of Al2O3 grains used to form the
compact, as well as the mean size and size distribution of
the Al2O3 bulk powder. Some additional void size and shape
control is effected through the manufacturing process. This
picture of the microstructure is needed for development of
the site percolation model to be considered shortly.

Commercial alumina ceramics are typically made to be
as dense as possible to improve strength of the final product
(21,22). Eliminating void space by efficient packing of the

alumina powder is the most convenient means of reducing
final porosity. Small, monodisperse powders and/or powders
with small mean diameter and narrow polydispersity are most
often used to minimize void space since the highest packing
densities may be achieved with such powders. Preserving pore
structure and volume were primary concerns of this work,
however, and required the use of larger monodisperse and
narrowly polydisperse powders in order to reduce packing
efficiency and increase total void space in the powder compact.

Manufacture of disk-shaped ceramic compacts in this study
consisted of four discrete steps: powder mixing, compaction, pre-
firing, and sintering. First, Al2O3, magnesium oxide (MgO), and
poly(vinylpyrrolidone) (PVP) powders were slurried, mixed,
dried, and milled to generate a cohesive powder. Adding
polymer binder to the powder does not alter the resulting pore
structure as long as the binder is completely dispersed.

Disks were formed from the milled powder by uniaxial
compaction to increase density and provide cohesive strength
for further handling. These disks were next pre-fired (23) at a
temperature sufficient to remove the polymer binder and
other volatile impurities, but at a rate low enough to minimize
the formation of vapor pockets in the disks.

Finally, disks were sintered at very high temperatures and
long exposure times to facilitate binding between individual
Al2O3 grains through flow of material and migration of grain
boundaries (3,24). While this process is performed to increase
disk strength, some densification also occurs as grains grow or
shrink in order to reduce the total grain surface area and thus
minimize overall system free energy. Since this process
eliminates void space, a small amount of magnesium oxide
(MgO) was added to the powder mixture to inhibit alumina
grain growth (24,25). Use of larger monodisperse and narrowly
polydisperse alumina powders also facilitated reduction of
grain growth and densification over the sintering times studied
in this work.

Percolation Theory

The pore structure resulting from the fabrication method
described above is very complex and difficult to model in
detail; nonetheless, certain characteristics of this structure
must be understood to properly design devices for transport
control. A useful approximation that relies on observation of
certain macroscopic properties to predict the pore volume
and structure may be obtained through percolation theory.

Percolation theory is a statistical method of describing
the behavior of random systems or processes. Power law
relationships describing the behavior of these processes (e.g.,
diffusion of a molecule through a porous body) may be
developed using the random walk model. Aspects of the
overall field of percolation theory (2,26) considered pertinent
to this work are described next.

The lattice concept is a convenient means of approxi-
mating the nodeYlinkYblob model of the porous alumina disk
microstructure. A sample two-dimensional square lattice is
shown in Fig. 1. In this structure, the corners of the squares
represent nodes, the sides of the squares represent links, and
the centers of the squares represent blobs. In this example,
each blob is adjacent to up to four other blobs, thus giving a
coordination number (z) of four. The magnitude of z reflects
the complexity of the lattice.
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This work utilized a site percolation model to describe the
random walk between sites. This model assumes that each
blob, or site, x exists with a probability P(x). Movement can
only occur between adjacent existing sites. The alternative,
known as a bond percolation model, assumes that all sites are
present but that each bond x exists with probability P(x). In
this case, movement can only occur between adjacent sites
across existing bonds. Percolation in a real system may follow
either model or be a combination of the two (27).

Two assumptions required by percolation theory are that
the arrangement of sites is statistically random, and that the
lattice is infinite in length. The assumption of infinite length
allows values of P(x) that might vary widely in a finite system
to converge to a single value. For example, the probability
that sufficient occupied sites exist to span the square shown
in Fig. 1 (a finite lattice) could be either 3/9, 4/9, or 5/9. These
values would converge in an infinite lattice to a well-defined
and unique value.

A cluster refers to a group of contiguous sites in the
lattice, while the composite of all occurrences of a given
cluster type in the lattice may be referred to as some type of
lattice porosity. Key properties of a cluster are described
relative to whether it spans the lattice, exists entirely within
the lattice, or possesses at least one site on the lattice surface
but terminates within the lattice or loops back to the same
surface. The latter two cluster types are generally known as
isolated clusters, while the first type is called an accessible
cluster. The point at which an isolated cluster achieves
sufficient length to span the lattice (known as a sample
spanning cluster) is called the critical percolation threshold
;c. The composite of all isolated clusters is the isolated
volume fraction (;I), while the composite of all accessible
clusters is the accessible volume fraction (;A).

The coordination number z of a three dimensional
infinite lattice may be estimated from its critical percolation
threshold using the approximation shown in Eq. (1) (28).

;c � 1= 1þ 0:356 zð Þ ð1Þ

Obviously, the value of ;c decreases as the lattice
becomes more complex. In the case of a cubic lattice, for
which z = 6, Eq. (1) predicts a critical percolation threshold
of 0.319.

All clusters are considered to be isolated for ; < ;c. By
definition, ;A

K 0 when ; < ;c. Various elements of the
total lattice porosity are defined by Eqs. (2a) and (2b) (29).

; ¼;A þ;I; ð2aÞ

;A ¼;B þ;D;; Q ;c: ð2bÞ

In Eq. (2b), ;B refers to the backbone volume fraction
and ;D refers to the dead-end volume fraction. The
backbone represents that part of the multiply-connected
sample-spanning cluster through which transport takes
place. Dead-end clusters are branches of the backbone that
do not contribute to transport at steady-state. Isolated
clusters continue to exist above ;c, but their relative
volume decreases rapidly as ; increases. The various
volume fractions are represented for a two-dimensional
square lattice in Fig. 2.

The above volume fractions taken in total represent a
macroscopic means of describing the actual microstructure.
These porosities do not require intimate knowledge of pore
dimensions and distribution as long as the requisite percolation
theory assumptions are satisfied. However, the dimensioning
and volume displacement techniques (e.g., helium pycnometry)
used to measure these quantities may not be sufficient to
capture the influence of the microstructure on transport, as
helium can enter pores that would be too small and/or
convoluted to be accessible to water or contribute to transport.
For this reason, a transport-dependent quantity, the effective
diffusivity (;E), is defined as the diffusivity (normalized to the
aqueous diffusivity) resulting from the transport resistance of
the lattice. Although ;E may be thought of as a subset of ;B

(i.e., ;E
e ;B), it is not rigorous to compare the two

quantities directly as the former depends on properties of the
transport system (solvent, solute, etc.) while the latter reflects
the pore structure available for transport. The critical
percolation threshold should, however, be the same for both
the structural and transport-dependent models as long as the
infinite lattice assumption is valid.

Scaling laws may be used to represent relationships
between total lattice porosity and structural or transport-
dependent quantities above ;c. Such laws are based on the
power law expansion as shown in Eq. (3).

f yð Þ / y� y0ð Þ� ð3Þ

Eq. (3) relates the value of a property f(y) to the magnitude
of the deviation yjy0. Here y represents some independent
property and y0 represents some initial or critical state of that
property. Different properties are affected differently by
yjy0 through the value of some critical exponent a, which is
referred to as a universal exponent because it typically

Fig. 2. Types of pore clusters on a two-dimensional square lattice.

 

P(x) = 4/9 P(x) = 5/9P(x) = 3/9

Fig. 1. Probabilities of occupied sites (black circles) crossing a finite

two-dimensional square lattice.
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depends only on the dimensionality of the system and not on
y or y0. It is this system dimensionality that is influenced by
the site probability P(x) through the average coordination
number. The value of a will also be influenced by whether
the scaling law in question is based on a site or bond
approach; in this work, all critical exponents are based on a
site percolation model.

Examples of scaling laws exist in the literature for both
the structural and transport cases. In the structural case, the
accessible volume fraction above the percolation threshold
may be modeled by Eq. (4),

;A / ;�;cð Þb; ð4Þ

which is valid for ; >;c. b is the universal scaling exponent
in this relationship, and has been reported (28) as equal to 0.4
in three dimensions. The backbone volume fraction, being a
subset of the accessible volume fraction, may likewise be
defined (28) as shown in Eq. (5).

;B / ;�;cð Þ�B ð5Þ

gB is the backbone lattice exponent with value 0.9 in three
dimensions.

In the transport-dependent case, aqueous diffusion is
enabled by the backbone volume fraction. This diffusion may
be modeled as shown in Eq. (6) (30).

;E / ;�;cð Þm ð6Þ

In this case, m is known as the conductivity exponent with
value 2.0 in three dimensions. The value of m has been
estimated in the literature through conductivity measure-
ments near the percolation thresholds of conductor/insulator
mixtures (31Y33), hence the name given to this parameter.

Values of ;I and ; may be obtained directly through
dimensional and volume displacement measurements. The
effective diffusivity ;E, however, must be derived by
measuring resistance to transport through the lattice and
comparing this resistance to the bulk (i.e., no resistance)
transport case. In the case of aqueous diffusion of a small
molecule, ;E may be obtained by measuring the steady state
transport rate through a lattice placed between an infinite
source and an infinite sink, estimating the diffusivity
corresponding to this rate, and comparing this diffusivity to
the bulk aqueous diffusivity. ;E is then defined by Eq. (7)
(28),

;E ¼ DB

�
Daq; ð7Þ

where DB is the diffusivity due to the resistance of the lattice
and Daq is the bulk aqueous diffusivity. Eq. (7) is valid as
long as the mean free path of the random walk of the
molecule is smaller than the pore diameter, in which case
Knudsen diffusion is not expected to occur.

Eq. (6) is only strictly valid near ;c. As ; increases,
transport approaches the conventional relationship of path
length (L) to time (t) shown in Eq. (8).

L2 ¼ DBt ð8Þ

This equation diverges as ;Y;c.
Trends in the various volume fractions as functions of

total porosity are shown in Fig. 3 for a three dimensional
cubic lattice. These trends hold for an infinite system, but
diverge as the pore size approaches the system length. This
results in the various quantities shown in Fig. 3 converging to
finite minima rather than zero as ;Y;c. Finite-size scaling
may be used to modify the above scaling laws to accommo-
date finite system length.

It was a goal of this work to model the behavior of ;E

near ;c for a finite system length to demonstrate how drug
release might still be achieved in ceramic devices of reduced
porosity (for higher strength). A modification to Eq. (6) for
this case has been suggested in the literature as shown in Eq.
(9) (5,7),

;E / L�m=nF ;�;cð ÞL1=n
� �

; ð9Þ

where L is the system length, n is a correlation length
exponent with value 0.9 in three dimensions (2), and F is a
finite, positive function valid for ; within about T10% of ;c.
The accepted criterion (34) for onset of finite-size effects is d/
L > 1/50, where d is the mean pore diameter. For purposes of
this study, L is defined as being equal to the system length
divided by the number of voids required to cross that length.

In keeping with other work performed in our laboratory
(17,18,35), the extremely complicated pore morphology of a
sintered alumina device makes it an ideal candidate for study
using percolation theory. Other work has shown that the
average ceramic microstructure may be approximated using a
14-sided polyhedron known as a tetrakaidecahedron (5). This
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polyhedron has a coordination number z = 14 and a site
percolation threshold (obtained by Monte Carlo transport
simulations) ;c = 0.17. Whether or not alumina devices
made in this laboratory possessed structural and transport
characteristics similar to those of the tetrakaidecahedral
lattice was addressed through comparison of experimental
and simulated values of ;c. DB was obtained for this purpose
by applying a membrane transport model to diffusion
through the alumina matrix.

Little previous experimental work addresses the actual
disappearance of the structural percolation parameter ;A as
;Y;c as predicted by simulation. As it was observed
through experiment that ;A could not be estimated
directly using Eq. (4), it was important to show whether
acceptable values of ;A could be obtained through direct
measurement of ;I and ; both above and below the
percolation threshold.

Finally, it was of interest to demonstrate finite-size
scaling behavior by artificially enlarging the pores in the
matrix, thereby forcing d/L > 1/50. In such a system,
anomalously high values of DB should be observed at the
value of ;c obtained for an infinite lattice, and the function
F should be obtainable from this high diffusivity.

Drug Delivery Applications of Alumina

Oxide ceramics, of which alumina is an example, are
commonly used as structural materials in the human body
due to their bioinertness, resistance to corrosion, and high
tensile strength (36,37). These properties make oxide
ceramics attractive for such uses as bone and tooth replace-
ments. Presence of significant porosity in the body of such a
structural ceramic is a disadvantage in these applications,
since this porosity will decrease the strength of the body.

The in vivo behavior of porous oxide ceramics has not
been widely studied; nonetheless, the same properties that
make alumina attractive as a structural biomaterial (bioinert-
ness and strength) could be used to advantage as a porous
implantable carrier for delivery of drug molecules (38). For
example, a porous ceramic body could be used as a reservoir
release device, wherein the ceramic acts as the walls of the
device and a solid drug is loaded into the hollow center. The
device would then be sealed shut and implanted. Fluid would
enter the reservoir through the pores of the ceramic and
solubilize the drug, which would then diffuse out of the
device as a saturated solution. Release of the drug, which
would depend on both the porosity of the matrix and the
saturation concentration of the drug, could then be modeled
using percolation theory. The release rate of the drug could
be manipulated by varying the pore structure of the ceramic
walls. Alumina reservoir devices would be most suitably
placed in or near areas of hard tissue, so as to ensure that no
damage to soft tissue could occur due to the presence of a
hard foreign body.

Alternatively, a drug could be dispersed in the pores of a
ceramic matrix by first permeating the matrix with a solution
of drug and then drying in some manner (e.g., lyophilization).
The pore structure of the matrix and the solubility of the
drug would dictate the release behavior of the device. Finally,
ceramic matrices could be used to immobilize enzymes and/
or act as filters for convective transport processes such as

dialysis. The required drug loading in and/or release behavior
of such a device could be described and predicted using the
concepts of percolation theory described here.

MATERIALS AND METHODS

Materials

Sintered ceramic disks were composed of 99.5% w/w Al2O3

(99.8%, lot #00521PM, Aldrich Chemical Co., Milwaukee, WI)
and 0.5% w/w MgO (99.5%, lot #H11G, Morton Thiokol Inc.,
Alfa Products, Danvers, MA). PVP (lot #G707, GAF Corp.,
Wayne, NJ) of average molecular weight 10,000 Da was used as a
binder. Composition of a typical 100 g dry powder batch
containing (for example) 10% w/w binder was 10 g PVP, 0.45 g
MgO, and 89.55 g Al2O3.

Aldrich Al2O3 powder was polydisperse with a nominal
diameter range of 1Y10 mm as reported by the vendor. Median
diameter of this powder was not obtained. To judge the
processing properties of this powder against those of a more
monodisperse powder, disks were also made using 0.5 mm
diameter monodisperse Al2O3 (99.7%, Realox alumina pow-
der, lot #XA-1000, Alcoa Chemicals Inc., Pittsburgh, PA).

Alumina Processing

Al2O3, MgO, and PVP powders were dry-mixed on a
piece of parchment paper using a large steel spatula. PVP
binder contents ranged from 5 to 20% w/w. Dry-mixed
powders were next charged to a Pyrex petri dish and formed
into a wet slurry by addition of enough distilled deionized
water (Sybron-Barnstead, Boston, MA) to completely wet
the mixture. This slurry was stirred for 5 min using a rubber
policeman, covered, allowed to settle for 24 h, stirred again,
and then dried in a Precision Scientific Co. model 10 vacuum
oven at 12.28 psig vacuum and 110-C. The dried powder cake
was pulverized in a porcelain mortar and pestle and stored in
an airtight glass jar.

Unfired disks were manufactured by compressing the
dried powder mixture into a disk shape using a Carver model
C laboratory press in which pressure was applied uniaxially
to the top of the sample. Compaction pressures ranged from
1,000 to 10,000 psig. A custom type 308 stainless steel tablet
punch was used to compress each powder mixture. Each disk
was made to a target weight of between 0.6 and 0.7 g.

Pressed disks were pre-fired at 1,100-C to remove water,
binder, and volatile impurities using a Lindberg model 51848
Moldatherm box furnace. Heating temperature was ramped
at a controlled rate to ensure thermal equilibrium in the
compacts. Pre-fired disks were next sintered at high temper-
ature using a Lindberg model 51314 1,700-C box furnace with
six molybdenum disilicide heating elements. Sintering fol-
lowed a heating schedule in which temperature was increased
at 30-min intervals to ensure thermal equilibrium. Maximum
sintering temperatures ranged from 1,450 to 1,670-C, for
times lengths of 1 to 36 h. Sintered disks were cooled at
1,300-C for 1 h before being allowed to cool to room tem-
perature for 4 to 5 h. The target sintering temperature was
achieved as quickly as possible in order to minimize
contribution of lower temperatures to the overall densifica-
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tion process. Cooling occurred in two stages to minimize the
potential for disk cracking due to thermal stress.

A Thermolyne Type 46100 1,700-C box furnace (De-
partment of Water Chemistry, University of Wisconsin) was
used in one study to gauge the effects of ramping rate (5 to
30-C/min), maximum sintering temperature (1,450 to
1,670-C), and sintering time (1 to 12 h) on the final porosities
of sintered disks made using both Aldrich polydisperse and
Alcoa monodisperse Al2O3 powders.

Sintered disks were washed by bathing and sonicating in
denatured HPLC grade ethyl alcohol (lot #05103BW,
Aldrich). Washed disks were then dried in the Moldatherm
furnace at 750-C.

Total Porosity Determination

Total porosities of sintered disks were determined by
two methods. Dimensional measurements of disks were
obtained with a Vernier caliper and micrometer and used to
calculate ; per Eqs. (10a) and (10b),

rbulk ¼ Mdisk

�
1 � d2

�
4

� �
; ð10aÞ

; ¼ 1� r
bulk

�
r

theor
; ð10bÞ

where Mdisk is the dry disk mass, rbulk is the measured disk
density, rtheor is the density of the alumina crystal (4.0 g/cm3),
l is the mean disk thickness, and d is the mean disk diameter
(n = 5 for each mean).

Dimensional measurements were prone to error as disks
did not shrink evenly during sintering; thus, an Archimedes
volume displacement method (1,3) was also used to measure
buoyant weight of a disk. In this case, rbulk is calculated using
Eq. (11),

rbulk ¼ r1Mdisk= M3 �M2½ �; ð11Þ

where M3 is the weight of disk plus any imbibed solution, M2

is the buoyant disk weight, and r1 is the density of suspending
liquid. Mean disk densities (n = 5) were determined in this
manner using a Mettler model 33340 density kit with a
solution of approximately 86% glycerol/water (99.5+%
spectrophotometric grade glycerol, lot 05902, Aldrich). Disks
were dried at 750-C to remove imbibed solution. Disk
volumes obtained by the Archimedes method were observed
to be more precise than those obtained by dimensional
measurement, and were thus used to calculate percolation
properties in the remainder of the work.

Structural Volume Fraction Determination

True disk volumes (i.e., solid grains plus isolated pore
space) were obtained using a Quantachrome Multipycnom-
eter model MVP-1 with helium as the displacement gas.
Helium was assumed to penetrate all but the isolated volume
fraction of a given disk.

True volumes (Vs) of batches of five disks each were
calculated using Eq. (12) (1),

Vs ¼ Vcell � Vref P1=P2½ � � 1½ �; ð12Þ

where Vcell and Vref are calibrated sample cell and reference
cell volumes, and p1 and p2 are original and final system
pressures. Isolated volume fractions were then calculated
from mean Vs results (n = 10 per batch) using Eq. (13),

;I ¼ Vs=Vt½ � � 1�;½ �; ð13Þ

where Vt and ; are the total bulk volume and mean total
porosity of the disk batch.

Note that ;I as it appears in Eq. (2a) refers to all non-
sample spanning clusters, regardless of whether such clusters
are truly inaccessible or are exposed to one surface of the
system. Both types of cluster are shown in Fig. 2. Helium
pycnometry only provides information regarding the truly
inaccessible cluster volume. Thus, since the assumption that
;j;I = 0 for ; < ;c (since ;A

K 0) will not be true when
;I is determined using helium pycnometry, the difference
between ; and ;I for ; < ;c was referred to in this work
as the surface volume fraction (;S) so as to not confuse the
nonzero accessible volume fraction existing for ; < ;c with
the accessible volume fraction as defined in Eq. (4). Using
these definitions, Eq. (2a) may then be rewritten as Eqs.
(14a) and (14b).

; ¼;I þ;S; ; < ;cð Þ; ð14aÞ

; ¼;I þ;A; ; Q ;cð Þ: ð14bÞ

Since, when using helium pycnometry, it is never the
case that ;j;I = 0 for all 0 < ; e 1, results obtained by this
technique give the appearance of being influenced by finite-
size scaling. Nonetheless, the discontinuity in ;I that occurs
at ; = ;c may still be used to estimate ;c from the values of
;A calculated using Eq. (14b) as will be discussed below.

Mercury porosimetry and scanning electron microscopy
were also performed in the broader work (1) to gain a quali-
tative idea of disk microstructure; however, as these tech-
niques were not required to estimate ;c nor to demonstrate
finite size scaling, they will not be discussed in this paper.

Effective Diffusivity Determination

Effective diffusivities for transport were estimated using
a Stokes diaphragm cell as shown in Fig. 4. Donor and

Fig. 4. Representation of a Stokes diaphragm cell (4). Cell is actually

mounted in the vertical position, but is shown here in a horizontal

orientation for convenience. Figure not to scale.
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receiver compartments were constructed of Kimax borosili-
cate glass. Disks were cemented in Lucite using TorrYSeal
epoxy and then mounted between the two glass compart-
ments. Cells were clamped vertically in Talboys t-line
laboratory stirrers and rotated at 100 rpm. Magnetic Teflon
stir bars used to agitate the compartment contents were
immobilized relative to cell motion using alnico horseshoe
magnets. The two small stirbars were positioned as close to
the disk faces as possible to minimize boundary layer
resistance to transport, while the two larger stirbars were
used to agitate the bulk solutions.

Both donor and receiver compartments contained a pH
6.9 phosphate buffer solution of 0.025 M K2HPO4 (Aldrich,
anhydrous, ACS reagent, lot 03420AW), and 0.025 M
KH2PO4 (Aldrich, 99%, ACS reagent, lot #03322KV), along
with 50 mg/ml 4-fluorobenzoic acid (FBA; Aldrich, 99%, lot
02818BV) as an internal liquid chromatography standard and
250 mg/ml propyl 4-hydroxybenzoate (PB; Aldrich, 99+%, lot
00712TM) as a preservative (39). In addition to the above,
the donor compartment contained 250 mg/ml benzoic acid
(BA; Aldrich, 99+%, ACS reagent, lot 10020 LV) at t = 0.
BA (pKa = 4.03) was assumed to be 99.9% ionized at pH 6.9.
Hindrance of benzoate ion diffusion due to electrical in-
teraction with the ceramic matrix was not expected to occur
at steady-state. Disks were perfused with the above solution
prior to initiation of each transport experiment.

To determine diffusivity of BA across a ceramic disk,
solution samples of 0.5 ml were removed from the receiver
cell every 3 to 5 days and analyzed for BA content using high
performance liquid chromatography. Concentrations were
measured using a Waters model 440 ultraviolet absorbance
detector using a 254 nm wavelength lamp and set at 0.05
absorbance units full scale. Separation columns included a
Beckman Ultrasphere ODS (5 mm, 4.6 mm � 25 cm, serial
#9UE787) reversed-phase C18 column and a Beckman
Ultrasphere ODS (5 mm, 4.6 mm � 4.5 cm, serial #7D14)
matched precolumn. The mobile phase was composed of
54% v/v H2O, 35% v/v methanol (Baxter, spectrophotomet-
ric grade, lot AW042), 10% v/v acetonitrile (Aldrich, HPLC
grade, lot 10201TW), and 1% v/v acetic acid (Aldrich, 99.7+%,
ACS reagent, lot 03210JT) to neutralize benzoate ion.

Achievement of steady-state BA transport across a disk
was defined as the point beyond which a profile of receiver
cell BA concentration vs. time became linear. Five time
points beyond this were usually sufficient for calculation of
DB using Eq. (15) (1),

DB ¼ 1=bt ln c
don
� c

rec
ð Þ0= cdon � crecð Þt
� �

; ð15Þ

where b is a constant that depends on the Stokes cell
configuration, t is elapsed time at steady state, cdon and crec

are the donor and receiver cell BA concentrations, and t = 0
refers to initiation of steady-state. Eq. (15) was obtained
using a pseudosteady-state approximation to first order
membrane transport (4).

The aqueous diffusivity of benzoate ion in pH 6.9
phosphate buffer at 25-C was obtained by injecting a 250
mg/ml benzoate ion solution into a Taylor dispersion appara-
tus placed in series with a Beckman model 160 variable
wavelength absorbance detector at 254 nm (1,4). A value of
Daq = 1.45 � 10j5 cm2/s, representing a mean of 11 trials, was
obtained using the Taylor dispersion apparatus. This value is
analogous to that reported by Higuchi et al. (40) for BA
diffusivity in 0.01 N HCl (1.4 � 10j5 cm2/s) using a
diaphragm diffusion cell.

Finite Size Scaling of Effective Diffusivity

In the finite-size scaling experiment, polymer micro-
spheres of known diameter were blended into batches of
Aldrich alumina/MgO/5% PVP that had been made by wet
mixing. Microspheres were obtained from Duke Scientific
Co. and consisted of either poly(styrene) divinylbenzene
(PVS/DVB; r = 1.05 g/cm3) or poly(methylmethacrylate)
(PMMA; r = 1.19 g/cm3). Microsphere properties are sum-
marized in Table I.

Four powder batches, each with enough spheres to
account for 10% of the estimated final total volume of a
typical disk, were made as listed in Table II. Pre-fired disks
were sintered using the Lindberg furnace in the Department
of Water Chemistry at a heating rate of 10-C/min and a
maximum sintering temperature of 1,670-C. Ten disks were
pressed from each batch, with five disks then being sintered
for 12 h and five for 24 h. Firing times were chosen to
eliminate as much residual porosity as possible based on the
results of previous experiments.

RESULTS

Porosity Control

Details of investigations into control of sintered alumina
disk porosity are summarized elsewhere (1). In summary, the
four parameters being observed to have the greatest impact
on disk porosity were alumina powder polydispersity, com-
paction pressure, sintering temperature, and time at temper-
ature. Disks made using polydisperse alumina powder were
found to have much higher total porosities than disks made
using monodisperse alumina powder regardless of other

Table I. Properties of Poly(Styrene) Divinylbenzene (PVS/DVB) and Poly(Methylmethacrylate) (PMMA) Microspheres Used in Finite-Size

Scaling Study

Sphere Type Mean Diameter (mm) Lot Number Spheres per Gram (�103) Total Weight (g) Volume per Sphere (cm3�10j6)

PVS/DVB 136 T 2.7 9276 720 1 1.39

PVS/DVB 282 T 5.6 10010 81 2 12.3

PVS/DVB 468 T 9.4 9513 18 2 55.6

PMMA 773 T 15 8543 4 2 250
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process conditions. Examples of relative disk porosities
obtained using polydisperse and monodisperse powders are
shown in the context of other process studies below.

As expected, pressures used to compress unfired disks
from polydisperse Al2O3 powder impacted final sintered
porosity as shown in Fig. 5a. Based on this result, compaction
pressures of 10,000 psig were chosen for further work in
order to produce void volumes closer to the proposed
percolation threshold of 0.17 and to avoid the impact of
small variations in compaction pressure on void volume that
would be anticipated at low pressures.

Dependencies of sintering temperature and time at
temperature for disks made using both polydisperse and
monodisperse alumina powders are shown in Fig. 5b and c.
These results indicate that some control of porosity in
polydisperse disks is possible using these parameters. The
sintering process in monodisperse disks was seen to be essen-
tially complete after only one hour of heating at all evaluated
temperatures. It was observed that monodisperse disks could
not be made with ; above the expected value of ;c.

For a set particle size or range of polydispersity, the final
porosity and extent of densification was influenced most
strongly by the sintering temperature. In this work, however,
sintering time was used to vary disk porosities since time
could be manipulated more conveniently than temperature
given the equipment at hand and also because the target
porosity range could be obtained through firing time alone.
Monodisperse powders were used to generate disks with low
total porosities (i.e., ; < ;c), while polydisperse powders
were useful at achieving higher porosities. Other aspects of
the investigation indicated that the microstructures of disks
made using both types of alumina powder were sufficiently
similar to enable grouping of data from these disks into a
single percolation theory model, as per Fig. 3, to expand the
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Fig. 5. (a) Influence of applied compaction pressure on total porosity (;) for

polydisperse alumina disks. 10% PVP, sintering time 4 h, sintering temperature

1670-C. (b) Dependence of ; on sintering temperature and powder polydispersity.

5% PVP, compaction pressure 10,000 psi, sintering time 4 h. (c) Dependence of ; on

sintering time and powder polydispersity. 5% PVP, compaction pressure 10,000 psi,

sintering temperature 1600-C. (d) Dependence of ; on binder content and sintering

time for polydisperse alumina disks. Compaction pressure 10,000 psig, sintering

temperature 1670-C.

Table II. Compositions of Powder Batches Used in Finite-Size

Scaling Study

Powder

Batch

Sphere

Content

(% v/v)

Alumina

(g)

MgO

(g)

PVP

(g)

Spheres

Used (g)

1 10 12.00 0.06 0.64 0.3165

2 10 11.99 0.06 0.64 0.3158

3 10 11.99 0.07 0.64 0.3117

4 10 12.00 0.06 0.65 0.3108
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achievable range of ;. Similar groupings were performed for
disks made at different sintering temperatures.

Finally, binder content had some impact on total po-
rosity (mostly at longer sintering times) as shown in Fig. 5d.
The slight reduction in total porosity achieved at 5% w/w
binder content was useful in generation of disks with porosities
closer to the expected value of ;c than were possible using
10% w/w binder.

Determination of ;A

Disks of varying porosities were made using both
monodisperse and polydisperse alumina powders, 5 and
10% w/w PVP binder contents, 10,000 psig compaction pres-
sure, 1,670-C sintering temperature, and a range of sintering
times. Reproducible total porosities were obtained using the
Archimedes volume displacement method. Total porosities
ranged from 0.045 to 0.080 for monodisperse alumina disks
and 0.129 to 0.429 for polydisperse alumina disks.

Isolated volume fractions were determined by helium
pycnometry. Below ;c, ;

A
K 0 and ; is calculated using

Eq. (14a). At and above ;c, ;A is calculated using Eq.
(14b). Because helium pycnometry only measures the true
isolated volume fraction ;I, no distinction can be made
between sample-spanning and non-sample spanning
accessible clusters above ;c.

As was illustrated in Fig. 3, ;I should increase linearly
as ;Y;c from below but then decay rapidly above ;c. This
behavior should hold regardless of whether ;I is composed
of all non-sample spanning clusters (per Eq. 2a) or only
reflects the inaccessible cluster volume (per Eq. 14a). Those
disks for which ;I is increasing with increasing ; may then
be assumed to have total porosities ; < ;c. ;S was
calculated for these disks by subtracting ;I from ;. The

monodisperse alumina disks made in this work were found to
exhibit values of ;I in this range.

On the other hand, values of ;I obtained experimentally
for polydisperse alumina disks were observed to decrease
rapidly with increasing ;, implying that all polydisperse
disks possessed porosities greater than ;c. ;A was
calculated for these disks by subtracting ;I from ; per Eq.
(14b). A nonlinear least squares fit of these ;A results vs ;
was then used to estimate ;c for the structural case as shown
in Eq. (16),

;A ¼ a ;�;cð Þb; ð16Þ

where a is a pre-exponential factor and b = 0.4. Results of this
fit were ;c = 0.128 T 0.001 and a = 0.58 T 0.01. This value of
;c was lower than the model prediction of ;c = 0.17 for a
tetrakaidecahedral lattice. A fit of Eq. (16) using the
expected value of ;c = 0.17 resulted in b = 0.43 T 0.02,
which confirmed the applicability of the model but suggested
that use of helium pycnometry may have resulted in
underestimation of ;c.

Results of ;A and ;I vs ; for polydisperse alumina
disks are summarized in Fig. 6. As may be seen from this
figure, the model accurately predicted the value of ;c;
however, the overall fit of the ;A data was poor. Of
course, the quality of the fit would be expected to
deteriorate above a total porosity of about 0.25 to 0.3,
because the scaling law becomes invalid as the influence of
individual pores (especially of isolated pores) on the overall
structure becomes less important and ;AY;.

DETERMINATION OF ;E

Estimation of the effective diffusivity of a small mole-
cule, ;E, was performed for 21 polydisperse alumina disks
made using binder contents of 5% w/w and 10% w/w and
sintering times of 1 to 24 h. Total porosities varied from 0.147
to 0.369, while effective volume fractions obtained using these
disks ranged from 0.000 (; = 0.147) to 0.079 (; = 0.368).
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A nonlinear least squares fit of all ;E vs ; was used to
estimate ;c for the transport-dependent case as shown in Eq.
(17),

;E ¼ b ; ¼;cð Þm; ð17Þ

where b is a pre-exponential factor and m = 2.0. Results of
this fit were ;c = 0.169 T 0.02 and b = 1.40 T 0.32. This
Btransport-dependent^ value of ;c matched the prediction of
;c = 0.17 for a tetrakaidecahedral lattice (5).

A summary of all ;E vs ; results is shown in Fig. 7. In
this case, deviation of the model from experimental data
appears to begin at ; $ 0.35 as implied by the increasing
scatter in the ;E vs ; results at higher values of ;. This
behavior is expected because the scaling law should, by
definition, become invalid as ; increases and the contri-
bution of individual pores to transport becomes less relevant.

Finite-Size Scaling

Finite-size scaling is possible in any system in which the
pore cluster diameter is the same order of magnitude as the
linear thickness of the disk. Such a system will exhibit
transport that is anomalously high as compared to that
expected on the infinite lattice. This effect can only be seen
within T10% of the percolation threshold, as it is swamped

out at higher porosities. The transport-dependent percolation
threshold obtained for the infinite lattice is also assumed to
be valid for a finite-size system for the purposes of modeling,
but ;E will not necessarily be equal to zero at this threshold.

An increase in the experimental value of ;E above the
value that would be expected on the infinite lattice for a
given total porosity is an indication of finite-size scaling. In
this study, finite-size scaling was implemented by using
polymer microspheres that left large pore bulbs in the disk
structure after pre-firing. ; was held approximately constant
by varying sphere concentration in accordance with sphere
diameter, thus increasing individual pore bulb diameter
without substantially increasing total porosity. A slight
increase in total porosity observed with increasing sphere
diameter was assumed not to be significant compared to the
effect of changing bulb volume.

Values of ;E were determined using disks made from
the four powders listed in Table II. Disks were sintered at
1,670-C for 4 h. The number of bulb diameters (L) required
to cross the linear thickness of each disk was calculated after
sintering, with the assumption being made that the amount of
volume shrinkage due to sintering was approximately 31%.
Data obtained from Stokes diaphragm cell experiments were
then used to calculate ;E for each disk using Eq. (7). Results
are summarized in Table III.

;E results for four disks (average total porosity 0.185)
of increasing L are shown in Fig. 8. ;E is seen to initially
decrease rapidly with increasing L and then level off. As L

Table III. Disk Property Data for Finite-Size Scaling Study

Powder Batch ; Sintered Void Diameter (mm) System Length (L)/Voids per Disk ;E ;�;cð ÞL1=n ;E
Lm=n

1 0.178 121 14.170 0.018 (0.003) 0.171 6.514

2 0.185 250 7.359 0.024 (0.000) 0.147 2.025

3 0.188 415 4.195 0.028 (0.001) 0.093 0.678

4 0.190 685 2.468 0.034 (0.003) 0.057 0.253

Disks processed at compaction pressure 10,000 psig, sintering temperature 1,670-C, sintering time 12 h. Values in parentheses represent

standard error of ;E linear regression fit. Sintered void diameters assume 31% shrinkage due to processing.
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Fig. 8. Finite-size scaling study, dependence of ;E on system length
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approaches infinity, ;E should assume its limiting value for
an infinite lattice of total porosity ;.

The value of the function F(;,L) in Eq. (9) was
estimated through a fit of ;EL�=� vs ;�;cð ÞL1=� as shown
in Fig. 9. This fit is summarized as Eq. (18).

;E / L�m=n exp ;�;cð ÞL1=n
� �

; ð18Þ

The value of the exponential term goes to one at the
limit of ;Y;c, with the result that ;E scales as L�m=n below
;c rather than falling to zero as in the infinite case. This
result has also been demonstrated by others (5,7). Equation
(18) is not valid for an infinite lattice because the exponential
term becomes infinite as LYV.

DISCUSSION

Production of Porous Ceramics

Polydisperse alumina was determined to be an ideal
powder for use in manufacturing disks of controlled porosity
and low shrinkage. Sintering temperature and powder
polydispersity were found to exert the greatest control over
final disk porosity, although sintering time rather than
temperature was used to control porosity in this work due
to equipment limitations.

Total porosities of 15 to 40% were easily obtained and
reproduced using polydisperse alumina powder, while very
low porosities (4 to 10%) were only achieved with a mono-
disperse powder. Thus, it may be seen that some degree of
polydispersity combined with moderate (i.e., between 1 and
10 mm) mean particle size is advantageous for retention of
significant void space in the final disk. It is important to note
that mean particle size and polydispersity are interrelated
because very small polydisperse disks could exhibit consid-
erable shrinkage while very large monodisperse disks could
shrink very little.

The Percolation Theory Model

Percolation theory models were used to estimate both
structural and transport-dependent values of ;c (0.128 and
0.169, respectively), which were seen to differ significantly.
Such disagreement may have resulted from incomplete filling
of sample-spanning pores by the transport medium, or alter-
natively from some fundamental deficiency in the structural
model. Because the structural backbone porosity is that
fraction of the accessible porosity thought to be used in
steady state transport, and also because this backbone should
consist of the largest and least tortuous pores in the
accessible cluster, it is reasonable to assume that the entire
backbone cluster is filled with liquid. Thus, incomplete filling
was not expected to affect transport, so ;c = 0.169 was
considered as a reliable result for the transport model.

The primary strength of the transport model is that it
does not require explicit use of a tortuosity Bfudge factor^ for
description of diffusion through porous systems. This tortu-
osity instead implicitly governs the values of ;E and ;c

through the matrix coordination number (z). The higher the
value of z, the more complicated the system, and thus the

more tortuous the pore structure. The pore space used in
transport appeared to successfully follow a tetrakaidecahe-
dral lattice approximation (z = 14).

The scaling law for ;E, using the conductivity exponent
m = 2.0, adequately represented the relationship between ;E

and ; up to a total porosity of about 35%. Deviations from
the ;E model at higher ; were thought to occur as
individual pores became less important in their
contributions to transport and the scaling law became
invalid. Transport should accelerate with increasing ;
because the tortuosity of each individual pore will decrease
as ; becomes larger and the pores begin to merge. Control
of small molecule transport, as would be required for
manipulation of drug release, thus appeared to be possible
only for ; in the approximate range ;c < ; e 0.35 as
suggested by the fit of the scaling law.

The scaling law for ;A predicted a value of ;c = 0.128
based on the experimental values of ;A and ;, instead of
the expected site percolation threshold of 0.17 for a tetrakai-
decahedral lattice. Since helium penetrates each alumina disk
from all surfaces in a pycnometry experiment, it is not
possible to discriminate actual sample spanning clusters
(those that would contribute to transport across the disk as
in the ;E study) from the total accessible volume fraction.
While it is still the case that the discontinuities in ;I and ;A

may be interpreted as occurring at ; = ;c as in the standard
model, the value of ;c obtained through pycnometry only
reflects the point above which ;I begins decreasing at the
expense of total accessible volume fraction and does not nec-
essarily indicate the onset of sample-spanning cluster growth.

The offset in ;c from the infinite case appeared to take
on the properties of a finite-size effect such as described by
Sahimi (26), i.e., ;c 1ð Þ �;c Lð Þ / L�1=� , where ;c(V) is
the percolation threshold of the infinite lattice, ;c(L) is the
threshold of the finite system, L is the system length, and ı́ is
the correlation length exponent defined in Eq. (9); however,
since helium can penetrate the disk from any direction and
move toward the center with equal probability during the
pycnometry experiment, it is equally likely that this offset
would occur for systems of infinite and finite L.

Based on these results, the conclusion can be made that
a volume exclusion approach such as helium pycnometry may
not be an appropriate means of estimating the accessible (i.e.,
sample-spanning) volume fraction as it cannot identify the
onset of the first sample-spanning cluster and thus under-
estimates ;c. It would be useful, nonetheless, to define the
value of ;c obtained through the ;A fit as a Bcritical isolated
volume fraction^ since it identifies the onset of exponential
accessible cluster growth independent of other system
information (such as the system length). However, this
result must be complemented by additional information
regarding backbone cluster properties that can only be
obtained through conductivity, transport, or perhaps
permeability studies.

Results of the finite-size scaling manipulation of ;E

showed that the transport rate of ionized benzoic acid could
be increased by redistributing and consolidating the void
space in a disk without significantly affecting the total
porosity. This may be a useful means of manipulating the
release rate of a ceramic device while simultaneously taking
advantage of the added strength imparted by low total
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porosity. It appeared that an exponential relationship existed
between the quantity ;�;cð ÞL1=n and the value ;E

Lm=n;
in the case of the tetrakaidecahedral alumina matrix, with
;E

Lm=n increasing in magnitude with increasing L.

CONCLUSION

Aqueous transport of a small molecule through alumina
disks with total porosities near the critical percolation
threshold may be described using a tetrakaidecahedral lattice
model. Both transport-dependent and structural properties of
the lattice can be obtained using percolation theory scaling
relationships, with the transport-dependent data obtained
through membrane diffusivity studies offering a better
reflection of percolation properties than structural data
obtained by helium pycnometry. Redistribution of the pore
volume from many small pores into a few large pores, with-
out altering the random distribution of the pore space, may
be an effective means of increasing the release rate of a small
molecule without increasing total porosity or sacrificing
mechanical strength. The use of helium pycnometry may be
limited to description of the onset of exponential cluster
growth rather than the characterization of sample-spanning
clusters. Finite-size scaling can be used to model the impact
of pore volume redistribution on transport rate at or below
the percolation threshold.

Notations

P(x) Probability of a site or bond x being present in the
lattice

z Coordination number
;c Critical percolation threshold
; Total porosity (total void fraction)
n Correlation length exponent (=0.9 in three dimensions)
;A Accessible volume fraction (structural property)
b Accessible lattice exponent (=0.4 in three dimensions)
;I Isolated volume fraction (structural property)
;B Backbone volume fraction (structural property)
;D Dead-end volume fraction (structural property)
gB Backbone lattice exponent (=0.9 in three dimensions)
;E Effective diffusivity (transport-dependent property)
m Effective conductivity exponent (=2.0 in three

dimensions)
DB Bulk diffusivity
Daq Aqueous diffusivity
r Density
c Concentration of ionized benzoic acid
L System length in number of voids
t Time
;S Surface volume fraction (structural property)

ACKNOWLEDGMENT

This work was funded in part through a 2-year Ad-
vanced Predoctoral Fellowship awarded by the Pharmaceu-
tical Manufacturer’s Association Foundation, Washington,
DC.

REFERENCES

1. S. R. Ellis. Porous Alumina Ceramics in Drug Delivery:
Processing Concerns and Percolation Models, Ph.D. Thesis.
University of WisconsinYMadison (1990).

2. D. Stauffer. Introduction to Percolation Theory, Taylor &
Francis, London, 1985.

3. W. D. Kingery, H. K. Bowen and D. R. Uhlmann. Introduction
to Ceramics, 2nd ed. Wiley, New York, 1976.

4. E. L. Cussler. Diffusion: Mass Transport in Fluid Systems,
Cambridge University Press, New York, 1986.

5. G. R. Jerauld, L. E. Scriven, and H. T. Davis. Percolation and
conduction on the 3D Voronoi and regular networks: a second
case study in topological disorder. J. Phys. C. Solid State Phys.
17(19):3429Y3439 (1984).

6. R. B. Pandey, D. Stauffer, A. Margolina, and J. G. Zabolitzky.
Diffusion on random systems above, below, and at their
percolation threshold in two and three dimensions. J. Stat. Phys.
34(3/4):427Y449 (1984).

7. M. Sahimi, B. D. Hughes, L. E. Scriven, and H. T. Davis. Critical
exponent of percolation conductivity by finite-size scaling. J.
Phys. C. Solid State Phys. 16:L521YL527 (1983).

8. A. B. Shelekhin, A. G. Dixon, and Y. H. Ma. Adsorption,
diffusion, and permeation of gases in microporous membranes:
III. Application of percolation theory to interpretation of
porosity, tortuosity, and surface area in microporous glass
membranes. J. Membr. Sci. 83(2):181Y198 (1993).

9. S. W. Tam and V. Ambrose. Tritium transport in lithium
ceramics porous media. J. Nucl. Mater. 191Y194:253Y257 (1992).

10. R. L. Jerzewski, and N. G. Lordi, Water vapor diffusion in
model tablet systems: II. Experiments with lactose anhydrous
based tablets. Int. J. Pharm. 101(1Y2):45Y56 (1994).

11. I. Caraballo, M. Millan, A. Fini, L. Rodriguez, and C. Cavallari.
Percolation thresholds in ultrasound compacted tablets. J.
Control Release 69:345Y355 (2000).

12. A. F. Rime, D. Massuelle, F. Kubel, H. R. Hagemann, and E.
Doelker. Compressibility and compactibility of powdered poly-
mers: poly(vinyl chloride) powders. Eur. J. Pharm. Biopharm.
44:315Y322 (1997).

13. H. Leuenberger and L. Ineichen. Percolation theory and physics
of compression. Eur. J. Pharm. Biopharm. 44:269Y272 (1997).

14. D. Blattner, M. Kolb, and H. Leuenberger. Percolation theory
and compactibility of binary powder systems. Pharm. Res. 7(2):
113Y117 (1990).

15. H. Leuenberger. New trends in the production of pharmaceuti-
cal granules: the classical batch concept and the problem of
scale-up. Eur. J. Pharm. Biopharm. 52:279Y288 (2001).

16. I. Caraballo, M. Fernandez-Arevalo, M. A. Holgado, and A. M.
Rabasco. Percolation theory: application to the study of the
release behaviour from inert matrix systems. Int. J. Pharm.
96:175Y181 (1993).

17. J. E. Hastedt and J. L. Wright. Diffusion in porous materials
above the percolation threshold. Pharm. Res. 7(9):893Y901
(1990).

18. J. E. Hastedt. Diffusional Release from a Porous Polymeric
Matrix: A Model Based on Percolation Theory. Ph.D. Thesis.
University of WisconsinYMadison (1990).

19. E. Ryshkewitch and D. W. Richerson. Oxide Ceramics (2) Ac-
ademic, Orlando, FL, (1985).

20. A. Coniglio. Cluster structure near the percolation threshold.
J. Phys. A. 15(12):3829Y3844 (1982).

21. R. J. Davey and B. Dobbs. On the morphology of ceramic
powders. Chem. Eng. Sci. 42(4):631Y637 (1987).

22. K. Kendall. Influence of powder structure on processing and
properties of advanced ceramics. Powder Technol. 58:151Y161
(1989).

23. R. W. Rice. Ceramic processing: an overview. AIChE J. 36(4):
481Y510 (1990).

24. K. A. Berry and M. P. Harmer. Effect of MgO solute on
microstructure development in Al2O3. J. Am. Ceram. Soc. 69(2):
143Y148 (1986).

25. N. J. Shaw and R. J. Brook. Structure and grain coarsening
during the sintering of alumina. J. Am. Ceram. Soc. 69(2):
107Y110 (1986).

2452 Ellis and Wright



26. M. Sahimi. Applications of Percolation Theory, Taylor &
Francis, London, 1980.

27. M. Yanuka. The mixed bond-site percolation problem and its
application to capillary phenomena in porous media. J. Colloid
Interface Sci. 134(1):198Y205 (1990).

28. K. K. Mohanty, J. M. Ottino, and H. T. Davis. Reaction and
transport in disordered composite media: Introduction of
percolation concepts. Chem. Eng. Sci. 37(6):905Y924 (1982).

29. S. Reyes and K. F. Jensen. Estimation of effective transport
coefficients in porous solids based on percolation concepts.
Chem. Eng. Sci. 40(9):1723Y1734 (1985).

30. S. Havlin, D. Ben-Avaraham, and H. Sompolinsky. Scaling
behavior of diffusion on percolation clusters. Phys. Rev. A.
27(3):1730Y1733 (1983).

31. S.-I. Lee, Y. Song, T. W. Noh, X.-D. Chen, and J. R. Gaines.
Experimental observation of nonuniversal behavior of the
conductivity exponent for three-dimensional continuum perco-
lation systems. Phys. Rev. B. 34(10):6719Y6724 (1986).

32. F. Brouers and A. Ramsamugh. Relation between conductivity
and fluid flow permeability in porous alumina ceramics. Solid
State Commun. 60(12):951Y953 (1986).

33. F. Brouers and A. Ramsamugh. Percolation and anomalous
conduction on fractals in fluid-saturated porous media. J. Phys.
C Solid State Phys. 21(9):1839Y1847 (1988).

34. A. Margolina, H. Nakanishi, D. Stauffer, and H. E. Stanley.
Monte Carlo and series study of corrections to scaling in two-
dimensional percolation. J. Phys. A. 17(8):1683Y1701 (1984).

35. R. D. Skwierczynski, Characterization of Porous Hydroxyapatite
and b-Whitlockite Ceramic Disks: An Application of Percolation
Theory, M.S. Thesis, University of WisconsinYMadison (1990).

36. J. W. Boretos. Bioceramics, Chem. Tech. April: 224Y231 (1987).
37. P. Griss and G. Heimke. Biocompatibility of high density

alumina and its application in orthopedic surgery. In D. F.
Williams (ed.), Biocompatibility of Clinical Implant Materials,
CRC Press, Boca Raton, Florida, 1981.

38. Y. W. Chien. Novel Drug Delivery Systems, Marcel Dekker,
New York, 1982.

39. B. Wickliffe and D. N. Entrekin. Relation of pH to preservative
effectiveness II. J. Pharm. Sci. 53(7):769Y773 (1964).

40. W. I. Higuchi, S. Prakongpan, and F. Young. Mechanisms of
dissolution of human cholesterol gallstones. J. Pharm. Sci. 62 (6):
945Y948 (1973).

2453Aqueous Transport in Rigid Porous Matrices


	Modeling of Aqueous Transport in Rigid Porous Matrices �near the Percolation Threshold
	Abstract
	Introduction
	Alumina Microstructure and Processing
	Percolation Theory
	Drug Delivery Applications of Alumina

	Materials and Methods
	Materials
	Alumina Processing
	Total Porosity Determination
	Structural Volume Fraction Determination
	Effective Diffusivity Determination
	Finite Size Scaling of Effective Diffusivity

	Results
	Porosity Control
	Determination of &empty;A

	Determination of &empty;E
	Finite-Size Scaling

	Discussion
	Production of Porous Ceramics
	The Percolation Theory Model

	References



